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Comment is made on the paper by Hawthorne, F. C. [Acta Cryst. (1974). A30, 603-604]. 

In the procedure outlined by Hawthorne (1974) for the 
refinement of crystal structure by the least-squares method 
with intensities from merohedrally twinned crystals, the 
structure factors calculated for the two crystals in the twin 
are summed. By introducing linear constraints in the least- 
squares refinement program, as stated by the author, the 
newly generated parameters are used to calculate additional 
structure-factor components to be added to the original. 
But, instead, it is the intensities calculated for the two 

crystals in the twin which have to be added to get the total 
intensity. The program has to be rewritten to minimize 
w{lo-(11 + 12)} 2 where Io is the observed intensity, 11 and 12 
are the calculated intensities due to the two crystals in the 
twin and w is the weight assigned for each observed inten- 
sity. 

Reference 

HAWTHORNE, F. C. (1974). Acta Cryst. A30, 603-604. 

Acta Cryst. (1975). A31, 388 

Ef f i c i ency  in F o u r i e r  phase  ref inement  for protein crystal  s t ruc tu res .  By DOUGLAS M. COLLINS, Department of 
Chemistry, Texas A &M University College Station, Texas 77843, U.S.A. 

(Received 8 August 1974; accepted 24 December 1974) 

Fourier phase refinement for macromolecular crystal structures can be accomplished using electron density 
maps sampled at intervals of half the minimum interplanar spacing for which diffraction data have been 
measured in that direction. Order-of-magnitude economy in computation is thus gained as compared to use 
of customary sampling rates. 

Fourier phase refinement is a much discussed method for 
improvement of the crystallographic description of large 
biological molecules [see, e.g., Barrett & Zwick (1971) and 
references cited therein]. Use of this method certainly will 
become more widespread as the real cost of computing 
decreases and computer programs based on Fast Fourier 
Transform algorithims become freely available. Notwith- 
standing the present speed and efficiency of Fourier inver- 
sion, repetitive calculations for crystals with large asymme- 
tric units still require a most substantial investment of 
computational resources. In the interest of further economy 
we have examined the proposition that the sampling cri- 
terion of Lipson & Cochran (1966) must be satisfied in 
Fourier phase-refinement calculations, as implied by 
Barrett & Zwick (1971). 

The conceptual cornerstone of these refinement calcula- 
tions is the idea that a mediocre electron density map (i.e. a 
map based on experimental structure amplitudes and estim- 
ated phases) can be modified in a reasonable way to 

provide a density function rather more similar to the true 
density function than was the original (Hoppe & Gassmann, 
1968). This being so, it is a simple matter to transform the 
modified density function and obtain improved phases. This 
concept was first presented by Sayre (1952) who gave the 
relationships 

0 (0~02 (0 ,  (la) 
and consequently, 

Fn= 1 0n ~, FkFn-k. (lb) 
V K 

where V is the unit cell volume and 0 is a shape function. 
The development of these equations has been directed 
principally toward use of the latter in ab initio estimation 
of phases for crystal structures of moderate complexity. 
In fact, (lb) and similar equations have been so successful 
in application that many crystallographers have come to 
think of (lb) as a fundamental relationship among structure 

Table 1. Figures of merit and convergence during phase refinement 

All numbers are given in pairs; the upper is for case I, the lower for case II as described in the text. 

Average change in 
phase angle (o). 
Rt  

Average error in 
phase angle (°)* 

Iteration 
0 1 2 3 4 

I - -  32 (37) 17 (20) 6 (8) 2 (4) 
II - -  32 (37) 16 (19) 5 (8) 2 (4) 
I - -  0.28 0.21 0.19 0.19 
II - -  0.26 0.21 0.21 0.22 
I 46 (46) 26 (32) 17 (24) 15 (22) 15 (22) 
II 46 (46) 24 (29) 16 (23) 16 (23) 17 (24) 

* Modulus-weighted averages are given; the corresponding unweighted averages are in parentheses. 
t R is calculated from R= ~[IFexpl- IFcatoll/ZlFexpl. 


